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A maximum likelihood procedure for testing the equality of sets of variances,
covariances, correlations, and regression weights between and/or within populations
is demonstrated. This procedure is an application of Joreskog's general factor-
analytic model for simultaneous factor analysis in several populations.

Joreskog (1971) devised SIFASP, a general
computer program (van Thillo & Joreskog,
Note 1) for simultaneous maximum likelihood
factor analysis in several populations. This
paper shows how SIFASP can be used to test
the equality of correlations, variances, co-
variances, and regression weights within and/or
between samples of different sizes. Corrections
for measurement error can be readily in-
corporated.

PROGRAM DESCRIPTION

SIFASP assumes that a factor analysis
model holds in each of the g populations under
study. If X, is denned as the vector of the p
observed measures in group g, then X9 can be
accounted for by k common factors (/„) and p
unique factors (aB). In matrix terms, the
model in each population is:

A.afa (1)

where ng is a vector of means and A0 is a matrix
of factor loadings for the p observed scores on
the k common factors in the gth population.
The p unique factors are independent of each
other and of the common factors. Without loss
of generality it may be assumed that the ex-
pected value of /„ and za is zero, that is, that
the common and unique factors have zero
means.
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Given these factor model assumptions, the
expected variance-covariance matrix Sfl among
the observed scores has the form:

(2)

where $„ is the variance-covariance matrix
of fa and ^B

2 is the diagonal vaiiance-co-
variance matrix of zp. When the factor model
does not fit the data perfectly, the observed
variance-covariance matrix Sg for the gth
group will differ from Se. The computer
program yields a chi-square statistic that is
a measure of how much 2ff differs from Sg,
that is, of how well the model fits the data. It
is not permissible to standardize the variables
in each group and to analyze the correlation
matrices instead of the variance-covariance
matrices. This violates the likelihood function,
which is based on the distribution of the ob-
served variances and covariances.

The three matrices A0, $„, and ^fg
2 for each

group are called the pattern matrices. The
elements of the pattern matrices are the model
parameters, and parameters are of three kinds:
(a) fixed parameters, which have been as-
signed given values, like 0 or 1; (b) constrained
parameters, which are unknown but equal to
one or more other parameters; and (c) free
parameters, which are unknown and not con-
strained to be equal to any other parameter.
A parameter may be constrained to be equal
to other parameters in the same and/or
different pattern mat rices in the same and/or in
different groups.
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TABLE 1

THE VARIANCE-COVARIANCE MATRIX FOR GROUP 1

Item Xi X, Xi

xl
X,
xa
Xi

= a 40-item verbal aptitude section
= a separately timed 50-item verbal aptitude section
= a 35-item math aptitude section
= a separately timed 25-item math aptitude section

63.382
70.984
41.710
30.218

110.237
52.747
37.489

60.854
36.392 32.295

TESTING THE EQUALITY OF VARIANCE-
COVARIANCE MATRICES BETWEEN

POPULATIONS

The logic of this test is to create a set of
factors that are identical to the observed
measures, which means that the variance-
covariance matrix $„ among the factors is
identical to the matrix among the observed
measures. Constraining the corresponding ele-
ments of $0 across groups, therefore, is a test
of the equality of the variance-covariance
matrices between groups. The factors identical
to the observed measures are created by making
the factor-loading matrix A0 an identity
matrix (i.e., unities in the diagonal, zeros
elsewhere) and ^B

2 a null matrix (i.e., all
zeros), indicating no residual variances. This
setup is equivalent to the Box (1949) test.

Example

Tables 1 and 2 give the observed variance-
covariance matrices for two random samples
(#1 = 865, N* = 900, respectively) of candi-
dates who took the Scholastic Aptitude Test
(Swineford, Note 2) in January 1971. The four
measures are, in order: Xi = a 40-item verbal
aptitude section, Xi — a separately timed
50-item verbal aptitude section, X$ = a. 35-
item math aptitude section, and X± = a
separately timed 25-item math aptitude
section.

The factor-loading matrices AI and Aa are
4 X 4 identity matrices, the residual matrix
*i2 = ^2

2 = 0, and $1 and $2 are 4 X 4 vari-
ance-covariance matrices in which correspond-
ing elements have been constrained equal.
Using SIFASP, the maximum likelihood
estimate of $ = $1 = $2 is:

f 65.687
71.702
41.120
29.586

108.753
54.074
38.207

62.054
37.857 33.881

The discrepancies between <$ and the observed
matrices are calculated by the program
(*--S,):

Population 1 residuals

2.305
0.718

-0.590
-0.632

-1.484
1.327
0.718

1.200
1.465 1.586

and

Population 2 residuals

-2.211
-0.689 1.423

0.571 -1.273
0.610 -0.689

-1.149
-1.404 -1.522

This model yielded a chi-square of 32.85 with
10 degrees of freedom (corresponding to the 10
elements set equal). The probability of ob-

TABLE2

THE VARIANCE-COVARIANCE MATRIX TOR GROUP 2

Item

Xi = a 40-item verbal aptitude section
X2 = a separately timed 50-item verbal aptitude section
Xi = a 35-item math aptitude section
Xt = a separately timed 25-item math aptitude section

67.898
72.301
40.549
28.976

107.330
55.347
38.896

63.203
39.261 35.403
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taining a larger chi-square when the model of
equal variance-covariance matrices is true is
p = .000. It may be concluded that the equal
variance-covariance matrix hypothesis is in-
consistent with the data, since the chi-square is
highly significant (at less than the .001 level).
Whether this statistically significant difference
is of practical importance can be better judged
from the absolute magnitude of the discrepan-
cies noted above. We judge these discrepancies
to be of little practical importance.

A major advantage over the Box test is that
the elements of $„ can be tested for equality
across and or within populations one or more
at a time. Thus, a chi-square fit statistic could
have been obtained for each element, testing
its equality across groups. A subset of elements
that are equal can be located in this way and
tested as a subset for equality across groups.

TESTING THE EQUALITY OF CORRELATION
MATRICES BETWEEN POPULATIONS

The logic of this test is to create a set of
factors in each group with unit variances,
which means that <!?<, for each group is a corre-
lation matrix. Constraining the corresponding
elements of $„ across groups, therefore, is a
test of the equality of the correlation matrices
between groups. This is accomplished by fixing
the diagonal elements of $„ at unity and
specifying the off-diagonal elements to be free.
The factor-loading matrix Ag is a diagonal
matrix with the diagonal elements free and
other elements fixed at zero. There are no
residuals (3?f is all zeros), since in essence the
observed variables are simply being rescaled
into factors with unit variance. The corre-
sponding off-diagonal elements of $e are
constrained across populations. The degrees of
freedom for the chi-square fit test are equal to
the number of unique correlations in $„.

Example

The data in Table 1 were used to test the
hypothesis that the correlation matrices were
equal. The program yielded the following
factor-loading estimates:

and

A, =

7.916
.0
.0
.0

.0
10.487

.0

.0

.0

.0
7.816
.0

.0

.0

.0
5.680

8.286
.0
.0
.0

.0
10.372

.0

.0

.0

.0
7.935
.0

.0

.0

.0
5.953

The hypothesized population correlation ma-
trix was estimated as:

ri.ooo
.849
.645
.629

1.000
.658
.630

1.000
.826 1.000

The program uses these parameter estimates to
generate an estimated variance-covariance
matrix 2 for each group using Equation 2 and
reports discrepancies from the observed vari-
ance-covariance matrices. It is of interest to
calculate the disci epancies between <i> and the
observed correlations. Deleting diagonal ele-
ments, fj$ — Sg'] is:

and

f .000 I
Population 1 -. 027 .014

I-.039 .002 .OOSj

f.OOl ]
Population 2 .026 - .014

1.038 -.001 -.004J

It is common practice to obtain the root mean
square discrepancy by taking the square root
of the average of all squared discrepancies. A
value of .020 was obtained for this example.
This can be compared with the chi-square of
24.20 (df = 6), which is significant at less than
the .001 level. Even though there is a statisti-
cally significant difference, the root mean square
discrepancy of .020 (largest value .038) is not
ordinarily of practical importance.

Analysts who find it easier to interpret dis-
crepancies between correlations could have
converted & in the Example section under the
heading Testing the Equality of Variance-
Covariance Matrices Between Populations to a
correlation matrix and calculated differences
from the observed correlation matrices.

COMPARISONS WITHIN POPULATIONS

In this section we demonstrate the flexibility
of SIFASP with respect to rescaling; in effect
testing a ratio of one parameter to another.
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Consider again the example used in the section
entitled Testing the Equality of Variance-
Covariance Matrices Between Populations.
The observed variances of the two verbal
sections should differ because of unequal
lengths (likewise with the math sections).
There should, however, be a specifiable
relationship because these sections were in-
tended to be "parallel" tests with different
numbers of items. To find the expected
relationship between the observed variances,
the principles detailed by Lord and Novick
(1968, p. 86) were used to derive the following
equation :

between X\ and X2 should be

var

var m(m+ k}

where k = (m+ 1)(1 - RC)/RC, Rc = reli-
ability of the composite test X\ + X2, and
m = ratio of number of items of X2 to X\.

The Group 2 data in Table 2 were used in
the published analysis of the January 1971
Scholastic Aptitude Test (Swineford, Note 2).
The published whole test reliability is
Rc = .928, from which a k of .175 was calcu-
lated. With m = 50/40 = 1.25, the ratio of
the observed variances should be 1.516 if the
sections are parallel.

To test a ratio of variances, the variance of
Xi was rescaled to reduce its variance by 1.516.
This is done by setting the factor loading to
Vl.516 = 1.231. The factor-loading matrix is
therefore iixed at :

A2 =

1.0 .0 .0 .0
.0 1.231 .0 .0
.0 .0 1.0 .0

I .0 .0 .0 1.0

The residuals (XI>22) were again set equal to zero,
and in $ the first two diagonal elements were
set equal. A chi-square of 1.43 with 1 degree of
freedom was obtained. Since the probability of
obtaining a larger chi-square if the model is
true is p = .23, it was concluded that this model
is consistent with the data. Swineford's (Note
2) statement that the two sections may be
regarded as essentially parallel is consistent
with these findings. It could also have been
shown that if the sections are parallel, then the
relation of the variance of Xi to the covariance

= [(1

By appropriate rescaling, this hypothesis could
be checked.

In part, this example was chosen to demon-
strate that the factor loadings can be changed
in any meaningful way. An additional element
of flexibility across populations is that the rank
of the observed matrices need not be the same
in the different groups — for example, the
correlation matrix of one group may be com-
pared with the appropriate subset of a larger
matrix in another group. If the comparable
variables are ordered differently in the ob-
served matrices, it is only necessary to make
sure that the comparable parameter elements
are equated.

TESTING REGRESSION WEIGHTS

Consider the case of the regression of X2 on
Xi in which it is hypothesized that this regres-
sion weight (B) is the same in two groups. The
logic in this case is to set up a factor (/i)
identical to the independent variable, in which
case the factor loading of Xz on this factor
will be identical to the regression weight for
Xz on X\. Constraining the corresponding
factor loadings across groups tests the equality
of the respective regression weights. Because
there is a residual in the regression of Xi on
/i, this problem requires the use of ^2, which
for convenience is defined as the diagonal of the
variance-covariance matrix of the independent
residuals.

The equations corresponding to Equation 1
are:

-Y, = A
and

X, = BJ\ + f .

The factor-loading matrix in Equation 1 is
therefore :

Since there is only one factor, <!>„ will consist
of a single element, the variance of _/\ that is
free:

*„ = [var(/!)] .

Since there is no residual for the Xi on J\
regression, the first residual variance will be
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fixed at zero and the second residual variance
will be the variance of the regression residuals,
var(f):

diagonal ^2 = [0, var(f)],

where var(f) is a free parameter. By constrain-
ing the Bg across groups, it is possible to test
the equality hypothesis without simultaneously
testing the equality of the regression residual
(fa) variances. The latter may be tested
separately or in combination with the equal
Bg assumption. This procedure is equivalent to
that of McLaughlin (1975).

TESTING PARTIAL REGRESSION WEIGHTS

In the general case it is necessary to define a
factor (fk) for each independent variable (Xk)
such that Xk = fk. The loadings of the
dependent variable on these factors are the
partial regression weights that may be tested
for equality between and/or within groups.
For example, if X\, Xi, and X3 are the inde-
pendent variables and Xt the dependent
variable, then

and

and

0
1
0

#42

fvar(A)
cov(/i/2) var(/2)

cov(/2/s) var(/a)

diagonal ^a
2 = [0, 0, 0, var(f)] .

It is quite possible to test the equality of regres-
sion weights between two groups in which the
number of independent variables differs.
Another practical application of this technique
is the testing of the homogeneity of within-
groups regressions when covariates are used
in repeated measures designs. This is a special
case of the procedures outlined in this section
or the section entitled Testing Regression
Weights, depending on whether there are
single or multiple covariates.

Standardized Partial Regression Coefficients

A somewhat more interesting problem arises
when standardized weights are to be compared.
The difficulty is that the factors for the inde-
pendent variables may be readily standardized

but the dependent variable is an observed
variable that cannot be standardized without
violating the likelihood function assumptions.
The answer arises from the fact that the factors
may be assigned any arbitrary variance without
restricting the likelihood function. The chi-
square remains the same because changing
the factor variance changes the factor loading
inversely by the same amount, that is, the
procedure is a simple rescaling that does not
affect fit. Consider what would happen in a
model that had only the regression of X3 on
Xlt where X^ = X^ and X* = Bf2+ f. If
the variance of /i is fixed at the variance of
Xi, thenXi = Vvar(Zi)/var(X2) and B = cor-
relation of Xi and X^ or the standardized
regression coefficient of X^ on X\. If B were
tested for equality across groups, it would be
the equivalent of testing the equality of the
correlation between X± and X^.

In the general case, if each of the independent
variable factors has its variance fixed at that
of the dependent variable, then the covariance
of each factor with the dependent variable is
standardized. The covariance between each
pair of factors is equal to the correlation be-
tween the corresponding pair of independent
variables. It follows that the loadings of the
dependent variable on the factors are standard-
ized partial regression weights. A test of the
equality of the residual variance across
groups is equivalent to testing whether the
coefficient of multiple correlation is equal. Any
regression coefficient can be tested for equality
to a fixed value of zero by setting it equal to
zero and examining the significance of the
resulting chi-square. This test is equivalent to
testing whether the corresponding partial, part,
or semi-partial correlation is different from
zero.

MODELS WHEN MEASUREMENT
ERROR Is KNOWN

Psychometricians use a variety of procedures
to estimate the reliability of a test. Knowing
the reliability (Rkk) of a test (X/,) is equivalent
to knowing the error variance, since the vari-
ance of the errors is equal to the variance
of the test multiplied by (1 — Rkk}- Such
estimates may be entered into all the models
discussed previously.
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Correcting Variance-Covariance Matrices

If error variances were known, then in the
sections entitled Testing the Equality of
Variance-Covariance Matrices Between Popu-
lations and Testing the Equality of Correlation
Matrices Between Populations, St^2 would not
be set equal to zero. For the example in the
variance-covaraince matrices section, diagonal

V = [var(Ei), var(E2), var(£3), var(E4)],

where var(E&) are variances of the correspond-
ing errors (£*). If the error variances for both
groups are entered into ^i2 and ^2

2 and A0

and $fl are specified as in the variance-co-
variance matrices section, the resulting model
would test whether the variance-covariance
matrices, corrected for attenuation, were
equal. The covariances between the factors are
equal to the covariances between the corre-
sponding Xk regardless of measurement error
if the model is true.

When error variances are entered in tya
2 for

all groups given the correlation matrices
section specifications for Aa and $„, the
hypothesis is that the correlation matrices
between groups are equal when corrected for
attenuation.

When standard errors are entered into ^f,
for the example in Comparisons Within Popu-
lations, the hypothesis to be tested is that the
variance of /2 is w2 = (1.25)2 times the vari-
ance of /i and the error variance for X2 is
m = 1.25 times that for X\. The variance of
/a could be rescaled by setting the factor loading
equal to 1.25, to test whether the factor vari-
ances are in the expected ratio.

Correcting Regression Weights for Attenuation

Consider the model in the section entitled
Testing Regression Weights when the error
variance for Xi (i.e., var^)) is known. In this
case SFj2 = [Va,r(,Ei), var(f)J and the variance
of fi will be less than the variance of X\ by
the error variance. If there are measurement
errors in the dependent variable, then what is
labeled var(f) will be the sum of the regression
residuals (£) and the error. The estimate of B
is only biased by errors in the independent
variable. If the error variance for X% is known,
then the unattenuated regression residual

variance can be obtained by subtraction from
the estimated variance of (£).

The case of partial regression weights when
the error variances are known is much the same.
The model in Testing Partial Regression
Weights is identical except that ^9

2 has one
free and three fixed elements, [Var(-Ei),
var(£2), var(-Ej), var(f)], where var(f) will
include measurement error. Unless error esti-
mates are included for all independent vari-
ables, none of the partial weights will, in
general, be fully corrected for attenuation. If a
partial weight corrected for attenuation is
significantly different from zero, then the corre-
sponding partial, part, or semi-partial corre-
lation is also different from zero with the same
sign.

Correcting Standardized Regression Weights for
Attenuation

Consider the two-variable regression Xz on
Xi when the error variances are known for X\
and Z2. The model is Xi = Xi/i + EI and
X3 = Bfi+ £ + E2. If the variance of FI is
fixed at the variance of X$ minus the vari-
ance of -F2, then

Ai = V[var(Xi) -var(JSi)]/[var(X2) -var(£2)]

and B = correlation of X\ and X?, divided by

V(reliability of ^(reliability of X2).

The unattenuated regression weight is equal
to the correlation between X\ and X2 corrected
for attenuation in X\ and X2. In general,
standardized regression weights should be
estimated from the unattenuated correlations
among variables. In the case of multiple inde-
pendent variables, the variance of the depen-
dent variable minus its "error variance is
assigned to each of the independent variable
factors.

DISCUSSION

Levy (1975) provided a procedure for com-
paring correlations and variances that requires
independent samples of equal size. In contrast,
the SIFASP technique allows for comparisons
within and/or between as many as 10 groups
of possibly unequal size.
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Lord (1975) has also provided a maximum
likelihood procedure that can be used to com-
pare (within the between samples) parameters
that are a specifiable function of the observed
variance-covariance matrices, such as vari-
ances, covariances, correlations, and regres-
sion weights. Comparison of the Lord and
Joreskog (1971) procedures is beyond the
scope of this paper.
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